Internet of things with data science
Full-time
Part-time
One year
Two and a half year
January 2025
In a nutshell
This course has now closed for new international applications for January 2025.
Make discoveries in data and explore the value Internet of Things (IoT) can bring to businesses and organisations. With our Internet of Things with Data Science postgraduate degree, you can enhance your existing computer science knowledge, or gain new skills that can help you secure a role in a fastest-growing employment field in the digital economy.
Available with full and part-time study routes, the course provides you with specialist IoT and data science knowledge to apply in a wide range of sectors, including healthcare, commerce, professional services and the built environment. Start dates are available each January and September.
You could get up to £10,000 towards your tuition fees
International applicant? Please check international intakes for the latest information and application dates.
Start your MSc Internet of Things with Data Science study journey
Register for our next Open Day where you can learn more about the course, tour our impressive new computing suites and meet the tutors
You will:
- Explore the full data mining lifecycle, from data pre-processing and exploratory data analysis to the application
- Develop an advanced understanding, and context of IoT, the skills, challenges, System Design and methodologies
- Learn about security vulnerabilities and challenges, including attack surfaces (networking, social engineering) and modern issues (IoT, Cloud).
- Complete high-level academic and practical work developing, evaluating and critically assessing a robust, scalable and usable IoT solution
students accepted
This is for you if...
You want to enhance your existing skills and qualifications for a career move into Internet of Things application
You want to take your data science skills to the next level, ready to lead IoT projects
You're a knowledge-seeker and want to explore the possibilities that the Internet of Things opens up
All about the course
Course delivery
The course is delivered through a range of highly-focused modules. The 180-credit MSc award comprises four taught modules, plus a research dissertation. The 120-credit PgDip award comprises four taught modules.
Flexibility is at the heart of our learning approach. You can choose to study this postgraduate course full-time or part-time on campus, with start dates in January and September:
- Full-time students will complete taught modules in each of the first two trimesters, and complete the 60-credit dissertation project in trimester three
- Part-time students will complete taught modules in years one and two
Course content
The curriculum is designed to upskill and empower graduates and professionals with limited prior subject knowledge of IoT, so they are ready to take up exciting, data-driven career opportunities. Through our industry-focus, we invite speakers from major companies and employers to participate in course delivery, providing real-world case studies and projects.
Course topics include principles and design of IoT systems, advanced databases, big data tools and techniques, security and privacy, machine learning and data mining. We regularly review module content with our industry partners to ensure the knowledge and skill set you will develop reflects trends and needs within professional and business communities. Learn more about the current course modules in the section below.
Course team
The Internet of Things with Data Science postgraduate course is delivered by an academic team with extensive industry experience and research connections, and a track record of developing solutions through industry partnerships.
Course leader: Professor Mo Saraee
Machine Learning and Data Mining
This module will help you to explore the full data mining lifecycle, from data pre-processing and exploratory data analysis to the application and evaluation of supervised and unsupervised machine learning algorithms.
Through practical, hands-on workshops using Python and Microsoft Azure Machine Learning, you will gain experience at using machine learning and data mining tools and techniques to extract insights from data.
Principles and Design of IoT Systems
This module will provide you with the history, advanced understanding, and context of IoT, the skills, challenges, System Design and methodologies the term implies. You will learn about the architectures to develop an IoT application using wearable sensors. You will experience all the stages in the design and implementation of a complex system, from its specification to the demonstration of a working prototype.
During this module, you will cover aspects of embedded systems programming, sensor data analytics using machine learning methods, user interface design, system integration and testing.
Security and Privacy in IoT
IoT devices and applications present new security vulnerabilities and challenges, and the data they generate has given rise to concerns over personal data and privacy. This industry-aligned module provides specialist cyber security knowledge, and a hands-on ethos, so you will gain the skills and knowledge ready to fight security and privacy issues and challenges in IoT systems.
In this module, you will learn about both attack and defence mechanisms and consider established attack surfaces (networking, social engineering) and modern issues (IoT, Cloud). You will also examine trade-offs between security and availability, and between privacy and audit; study threats to information security, technologies used to detect and combat them, and techniques and tools used to manage and investigate incidents.
MSc Project
The project module aims to provide you with an opportunity to integrate learning from the course modules, working under the direction of an academic supervisor to carry out high-level coordinated academic and practical work on researching a suitable problem and developing, evaluating and critically assessing a robust, scalable and usable solution.
Plus, one module from the following options
Advanced Databases
This module will provide you with a broad overview of relational databases and Structured Query Language (SQL). You will learn the theory and practice of effective database design and will gain fluency in using SQL to query, extract and analyse data, and to create and manage databases. You will also learn key issues within the field of databases, including performance, security, recovery and transaction management.
Big Data Tools and Techniques
This module will introduce you to Big Data, the characteristics that define it, and the challenges and opportunities it presents. You will learn how cloud computing, distributed data processing frameworks, and NoSQL databases can be used to ingest, process, analyse and store massive, complex datasets. Alongside this, practical workshops will give you hand-on experience working with a wide range of real-world datasets, including unstructured text data, image data and data from Internet of Things sensor networks. You will learn how to use Apache Spark to process large-scale data and apply data analysis, data visualisation and machine learning techniques.
Please note that it may not be possible to deliver the full list of options every year as this will depend on factors such as how many students choose a particular option. Exact modules may also vary in order to keep content current. When accepting your offer of a place to study on this programme, you should be aware that not all optional modules will be running each year. Your tutor will be able to advise you as to the available options on or before the start of the programme. Whilst the University tries to ensure that you are able to undertake your preferred options, it cannot guarantee this.
School of Science, Engineering and Environment
Rising to the challenge of a changing world, our postgraduate courses are designed to shape the next generation of urbanists, scientists, engineers, consultants and leaders.
Shaped by industry, and delivered by supportive programme teams, you can develop the skills to take your career potential further.
INDUSTRY COLLABORATION AND RESEARCH
When you start this degree course with Salford, you are joining a community making a difference in industry, our local region and in our wider society.
Many of our academics and technicians who support your course also lead collaborative, interdisciplinary, high-impact work in a range of local and global computing and informatics issues and challenges.
Discover how you are part of something bigger.
What about after uni?
EMPLOYMENT
Employment prospects for graduates of the MSc Internet of Things with Data Science are strong, given current and growing levels of demand in fields across health, finance, energy and transport, neuroscience companies and central government.
Demand for data science enabled IoT engineers outstrips supply and there is continued demand for qualified, talented graduates across many global industries. Equipped with this qualification, you will have a skill set and technical knowledge relevant for the IoT and Data Science job market.
Typical roles to consider once you graduate include IoT Product Manager, Supply Chain Transformation Manager, IoT Data Analyst, Big Data Engineer, and Business Transformation Manager.
FURTHER STUDY
You might also choose to take your subject interest further with postgraduate research. The Salford Innovation and Research Centre (SIRC) is home to Informatics PhD and Research Master’s opportunities in knowledge discovery and semantic web, software engineering, big data, data mining and analytics, cyber security, information visualisation and virtual environments.
Explore our Doctoral School to learn more about research training, support and opportunities.
What you need to know
APPLICANT PROFILE
This course is ideal for mathematics, computing or science graduates, and experienced professionals, eager to build skills in the growing IoT field.
ENGLISH LANGUAGE REQUIREMENTS
All of our courses are taught and assessed in English. If English is not your first language, you must meet our minimum English language entry requirements. An IELTS score of 6.0 (no element below 5.5) is proof of this, and we also accept a range of equivalent qualifications.
Read more about our English language requirements, including information about pathways that can help you gain entry on to our degree courses.
INTERNATIONAL APPLICATIONS
Please check international intakes for the latest information and application dates.
Undergraduate degree
The minimum requirement is a second class division honours degree or equivalent in any discipline, with previous demonstrable mathematical aptitude e.g. (A-level or BTEC Mathematics).
Accreditation of Prior Learning (APL)
We welcome applications from students who may not have formal/traditional entry criteria but who have relevant experience or the ability to pursue the course successfully.
The Accreditation of Prior Learning (APL) process could help you to make your work and life experience count. The APL process can be used for entry onto courses or to give you exemptions from parts of your course.
Two forms of APL may be used for entry: the Accreditation of Prior Certificated Learning (APCL) or the Accreditation of Prior Experiential Learning (APEL).
For more information or enquires about this scheme, please contact: AdmissionsSEE-PGT@salford.ac.uk
How much?
Type of study | Year | Fees |
---|---|---|
Full-time home | 2025/26 | £10,350.00per year |
Full-time international | 2025/26 | £19,100.00per year |
Part-time | 2025/26 | Calculated on a pro rata basis |
Additional costs
Having your own laptop (16GB of RAM and an Ethernet port) is not essential, but it will give you more flexibility in where and how you engage with the software you will need to use during your studies (software is provided as part of the course).
You should consider further costs which may include books, stationery, printing, binding and general subsistence on trips and visits.
Data Science Scholarships
For September 2023 and January 2024 entry, we’re offering scholarships worth £10,000 which are available to applicants with an offer to study MSc Data Science or MSc Internet of Things with Data Science. The scholarships are designed to increase diversity in the UK AI and data science sector.
Scholarships are available to home fee students who are part of one of nine underrepresented groups as identified by the OfS, with scholarships prioritised for women, black students, students registered disabled and those from low socioeconomic backgrounds.
For full eligibility criteria and further information, visit our fees and funding page.
International student scholarships
If you are a high-achieving international student, you may be eligible for one of our scholarships. Learn more about our latest international scholarships.